

The Emerging QCD Frontier: The Electron Ion Collider

Thomas Ullrich Brookhaven National Laboratory

> Quark Matter '08 February 9, 2008

The Glue That Binds Us All

$$L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

- "Emergent" Phenomena not evident from Lagrangian
 - Asymptotic Freedom & Color Confinement

The Glue That Binds Us All

$$L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

- "Emergent" Phenomena not evident from Lagrangian
 - Asymptotic Freedom & Color Confinement

Gluons

- Determine essential features of QCD
- Dominate structure of QCD vacuum

Action (~energy) density fluctuations of gluon-fields in QCD vacuum (2.4 ×2.4× 3.6 fm) (Derek Leinweber)

The Glue That Binds Us All

$$L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

- "Emergent" Phenomena not evident from Lagrangian
 - Asymptotic Freedom & Color Confinement

Gluons

- Determine essential features of QCD
- Dominate structure of QCD vacuum

- Hard to "see" glue in the low-energy world
 - Gluon degrees of freedom "missing" in hadronic spectrum
 - Drive the structure of baryonic matter already at medium-x
 - Crucial players at RHIC and LHC

Role of Glue in Heavy-Ions

Jets (π⁰) Production

Heavy Flavor Production

Lattice

1.0

1.5

2.0

2.5

3.5

3.0

How to Measure Glue?

$$\frac{d^2\sigma^{ep\to eX}}{dxdQ^2} = \frac{4\pi\alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right].$$

How to Measure Glue?

$$\frac{d^2\sigma^{ep\to eX}}{dxdQ^2} = \frac{4\pi\alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right].$$

Scaling violation: $dF_2/dlnQ^2$ and linear DGLAP Evolution $\Rightarrow G(x,Q^2)$

How to Measure Glue?

$$\frac{d^2\sigma^{ep\to eX}}{dxdQ^2} = \frac{4\pi\alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) \left(F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right) \right].$$

Scaling violation: $dF_2/dlnQ^2$ and linear DGLAP Evolution $\Rightarrow G(x,Q^2)$

What Do We Know About Glue?

Linear DGLAP evolution

- negative G(x,Q²) at low Q²?
- built in high energy "catastrophe"
 - xG rapid rise violates unitary bound

xG must saturate ⇒ new approach

What Do We Know About Glue?

Linear DGLAP evolution

- negative G(x,Q²) at low Q²?
- built in high energy "catastrophe"
- *xG* rapid rise violates unitary bound
 xG must saturate ⇒ new approach

BK/JIMWLK: *non-linear* effects ⇒ saturation

- characterized by $Q_s(x,A)$
- believed to have properties of a Color Glass Condensate

Enhancing Saturation Effects: e+A

Scattering of electrons off nuclei:

Probes interact over distances $L \sim (2m_N x)^{-1}$

For $L > 2 R_A \sim A^{1/3}$ probe cannot distinguish between nucleons in front or back of nuclei Probe interacts *coherently* with all nucleons

$$Q_s^2 \propto \frac{\alpha_s x G(x, Q_s^2)}{\pi R_A^2}$$

$$Q_s^2 \propto \frac{\alpha_s x G(x,Q_s^2)}{\pi R_A^2}$$
 HERA: $xG \propto \frac{1}{x^{1/3}}$ A dependence: $xG_A \propto A$

Enhancing Saturation Effects: e+A

Scattering of electrons off nuclei:

Probes interact over distances $L \sim (2m_N x)^{-1}$

For $L > 2 R_A \sim A^{1/3}$ probe cannot distinguish between nucleons in front or back of nuclei Probe interacts coherently with all nucleons

$$Q_s^2 \propto \frac{\alpha_s x G(x,Q_s^2)}{\pi R_A^2}$$
 HERA: $xG \propto \frac{1}{x^{1/3}}$ A dependence: $xG_A \propto A$

$$HERA: xG \propto \frac{1}{x^{1/3}}$$

Nuclear "Oomph" Factor:
$$(Q_s^A)^2 \approx c Q_0^2 \left(\frac{A}{x}\right)^{1/3}$$

Enhancement of Qs with A

⇒ non-linear QCD regime reached at significantly lower energy in eA than in ep

The Nuclear "Oomph"

More sophisticated analyses ⇒ confirm (exceed) pocket formula

(e.g. Kowalski, Lappi and Venugopalan, PRL 100, 022303 (2008); Armesto et al., PRL 94:022002; Kowalski, Teaney, PRD 68:114005)

The Nuclear "Oomph"

More sophisticated analyses ⇒ confirm (exceed) pocket formula

(e.g. Kowalski, Lappi and Venugopalan, PRL 100, 022303 (2008); Armesto et al., PRL 94:022002; Kowalski, Teaney, PRD 68:114005)

Note:

$$Q^{2} > Q_{s}^{2} \Rightarrow \alpha_{s} = \alpha_{s}(Q^{2})$$

$$Q^{2} < Q_{s}^{2} \Rightarrow \alpha_{s} = \alpha_{s}(Q_{s}^{2})$$

Well mapped in e+p

Well mapped in e+p

Not so for $\ell+A$ ($\nu+A$)

- many with small A
- low statistics

Well mapped in e+p

Not so for $\ell+A$ ($\nu+A$)

- many with small A
- low statistics

- $\mathcal{L}(EIC) > 100 \times \mathcal{L}(HERA)$
- Electrons
 - $E_e = 3 20 \text{ GeV}$
 - polarized
- Hadron Beams
 - $E_A = 100 \text{ GeV}$
 - $-A = p \rightarrow U$
 - polarized p & light ions

Well mapped in e+p

Not so for $\ell+A$ ($\nu+A$)

- many with small A
- low statistics

- $\mathcal{L}(EIC) > 100 \times \mathcal{L}(HERA)$
- Electrons
 - $E_e = 3 20 \text{ GeV}$
 - polarized
- Hadron Beams
 - $E_A = 100 \text{ GeV}$
 - $-A = p \rightarrow U$
 - polarized p & light ions

Terra incognita:

small-x, $Q \le Q_s$ high-x, large Q^2 Well mapped in e+p

Not so for $\ell+A$ ($\nu+A$)

- many with small A
- low statistics

- $\mathcal{L}(EIC) > 100 \times \mathcal{L}(HERA)$
- Electrons
 - $E_e = 3 20 \text{ GeV}$
 - polarized
- Hadron Beams
 - $-\overline{E_A} = 100 \text{ GeV}$
 - $-A = p \rightarrow U$
 - polarized p & light ions

Terra incognita: small-x, $Q \le Q_s$ high-x, large Q^2 Well mapped in e+p

Not so for $\ell+A$ ($\nu+A$)

- many with small A
- low statistics

- $\mathcal{L}(EIC) > 100 \times \mathcal{L}(HERA)$
- Electrons
 - $E_e = 3 20 \text{ GeV}$
 - polarized
- Hadron Beams
 - $E_A = 100 \text{ GeV}$
 - $-A = p \rightarrow U$
 - polarized p & light ions

Electron Ion Collider Concepts

eRHIC (RHIC/BNL):

Add Energy Recovery Linac

 $E_e = 10 (20) \text{ GeV}$

 $E_A = 100 \text{ GeV (up to U)}$

 $\sqrt{s_{eN}} = 63 (90) \text{ GeV}$

 \mathcal{L}_{eAu} (peak)/n ~ 2.9·10³³ cm⁻² s⁻¹

ELIC (CEBAF/JLAB):

Add hadron machine

 $E_e = 9 \text{ GeV}$

 $E_A = 90 \text{ GeV (up to Au)}$

 $\sqrt{s_{eN}} = 57 \text{ GeV}$

 \mathcal{L}_{eAu} (peak)/n ~ 1.6·10³⁵ cm⁻² s⁻¹

- Momentum distribution of gluons G(x,Q²)
 - Extract via scaling violation in F_2 : $\delta F_2/\delta ln Q^2$
 - Direct measurement: $F_L \sim G(x, Q^2)$ (requires √s scan)
 - 2+1 jet rates
 - Inelastic vector meson production (e.g. J/ψ)
 - Diffractive vector meson production ~ $[G(x,Q^2)]^2$

- Momentum distribution of gluons G(x,Q²)
 - Extract via scaling violation in F_2 : $\delta F_2/\delta ln Q^2$
 - Direct measurement: $F_L \sim G(x, Q^2)$ (requires √s scan)
 - 2+1 jet rates
 - Inelastic vector meson production (e.g. J/ψ)
 - Diffractive vector meson production $\sim [G(x,Q^2)]^2$
- Space-time distributions of gluons in matter
 - Exclusive final states (e.g. vector meson production ρ , J/ψ)
 - Deep Virtual Compton Scattering (DVCS) $\sigma \sim A^{4/3}$
 - F_2 , F_L for various A and impact parameter dependence

- Momentum distribution of gluons G(x,Q²)
 - Extract via scaling violation in F_2 : $\delta F_2/\delta ln Q^2$
 - Direct measurement: $F_L \sim G(x, Q^2)$ (requires √s scan)
 - 2+1 jet rates
 - Inelastic vector meson production (e.g. J/ψ)
 - Diffractive vector meson production $\sim [G(x,Q^2)]^2$
- Space-time distributions of gluons in matter
 - Exclusive final states (e.g. vector meson production ρ , J/ψ)
 - Deep Virtual Compton Scattering (DVCS) $\sigma \sim A^{4/3}$
 - F_2 , F_L for various A and impact parameter dependence
- Interaction of fast probes with gluonic medium?
 - Hadronization, Fragmentation
 - Energy loss (charm!)

- Momentum distribution of gluons G(x,Q²)
 - Extract via scaling violation in F_2 : $\delta F_2/\delta ln Q^2$
 - Direct measurement: $F_L \sim G(x, Q^2)$ (requires √s scan)
 - 2+1 jet rates
 - Inelastic vector meson production (e.g. J/ψ)
 - Diffractive vector meson production $\sim [G(x,Q^2)]^2$
- Space-time distributions of gluons in matter
 - Exclusive final states (e.g. vector meson production ρ , J/ψ)
 - Deep Virtual Compton Scattering (DVCS) $\sigma \sim A^{4/3}$
 - F₂, F_L for various A and impact parameter dependence
- Interaction of fast probes with gluonic medium?
 - Hadronization, Fragmentation
 - Energy loss (charm!)
- Role of color neutral excitations (Pomerons)
 - Diffractive cross-section $\sigma_{diff}/\sigma_{tot}$ (HERA/ep: 10%, EIC/eA: 30%?)
 - Diffractive structure functions and vector meson production
 - Abundance and distribution of rapidity gaps

Example of Key Measurement: FL

$$\frac{d^2\sigma^{ep\to eX}}{dxdQ^2} = \frac{4\pi\alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right] dxdQ^2$$

HKM and FGS are "standard" shadowing parameterizations that are evolved with DGLAP

F_L ~ α_s G(x,Q²) requires √s scan, Q²/xs = y

Here:

$$\int \mathcal{L}dt = 4/A \text{ fb}^{-1} (10+100) \text{ GeV}$$

= 4/A fb⁻¹ (10+50) GeV
= 2/A fb⁻¹ (5+50) GeV

statistical error only

Syst. studies of $F_L(A, x, Q^2)$:

- $G(x,Q^2)$ with great precision
- Distinguish between models

Symbiosis between EIC and HI

- Thermalization:
 - At RHIC system thermalizes (locally) fast (τ_0 < 1 fm/c)
 - We don't know why and how? Initial conditions?

At present no first principle understanding of thermalization in QCD

Need: $G(x, Q^2)$

Al Mueller (2007)

Symbiosis between EIC and HI

- Thermalization:
 - At RHIC system thermalizes (locally) fast (τ_0 < 1 fm/c)
 - We don't know why and how? Initial conditions?
- Role of saturation ?
 - RHIC → suppression in forward region
 - LHC → midrapidity ?
 - bulk (< 2-3 GeV/c)</p>

Symbiosis between EIC and HI

- Thermalization:
 - At RHIC system thermalizes (locally) fast (τ_0 < 1 fm/c)
 - We don't know why and how? Initial conditions?
- Role of saturation ?
 - RHIC → suppression in forward region
 - LHC → midrapidity ?
 - bulk (< 2-3 GeV/c)</p>
 - Jet Quenching:
 - Need Reference: E-loss in cold matter
 - No HERMES data for:
 - charm energy loss
 - in LHC energy range

Experimental Aspects

Experimental Aspects

I. Abt, A. Caldwell, X. Liu, J. Sutiak, hep-ex 0407053

Concepts:

Focus on the rear/forward acceptance and thus on low-x / high-x physics

 compact system of tracking and central electromagnetic calorimetry inside a magnetic dipole field and calorimetric end-walls outside

Experimental Aspects

I. Abt, A. Caldwell, X. Liu, J. Sutiak, hep-ex 0407053

J. Pasukonis, B.Surrow, physics/0608290

Concepts:

Focus on the rear/forward acceptance and thus on low-x / high-x physics

- compact system of tracking and central electromagnetic calorimetry inside a magnetic dipole field and calorimetric end-walls outside
- (b) Focus on a wide acceptance detector system similar to HERA experiments
 - allow for the maximum possible Q² range.

Summary

 EIC presents a unique opportunity in high energy nuclear physics and precision QCD physics

e+A	Polarized e+p
 Study the Physics of Strong Color Fields Establish (or not) the existence of the saturation regime and its properties Explore non-linear QCD Measure momentum & space-time of glue Study the nature Pomerons Test and study the limits of universality 	 Precisely image the sea-quarks and gluons to determine the spin, flavor and spatial structure of the nucleon

- Embraced by NSAC in NP Long Range Plan
 - Recommendation: R&D on the level of \$6M/year over next 5 years
- Plan: EIC Proposal ready for Next Long Range Plan (2012)

EIC on the web: http://web.mit.edu/eicc

Additional Slides

Spin Physics at the EIC

Spin Structure of the Proton

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$$

quark contribution $\Delta\Sigma \approx 0.3$

gluon contribution $\triangle G \approx -0.2 \pm 0.7$

ΔG: a "quotable" property of the proton (like mass, charge)

Measure through scaling violation:

$$\frac{dg_1}{dlogQ^2} \propto -\Delta g(x, Q^2)$$

$$\Delta G = \int_{x=0}^{x=1} \Delta g(x, Q^2) dx$$

Superb sensitivity to Δg at small x!

Connection to p+A

- e+A and p+A provide excellent information on properties of gluons in the nuclear wave functions
- Both are complementary and offer the opportunity to perform stringent checks of factorization/universality
- Issues:
 - p+A lacks access to x, Q²
 - G from p+A? (model dependent)

e+p HERA versus p+p Tevatron

⇒ Breakdown of *factorization* seen for diffractive final states

The EIC and the LHeC

EIC: L > $1x10^{33}$ cm⁻²s⁻¹ E_{cm} = 20 - 100 GeV LHeC: L = $1.1x10^{33}$ cm⁻²s⁻¹ E_{cm} = 1.4 TeV

- Variable energy range
- Polarized and heavy ion beams
- High luminosity in energy region of interest for nuclear science
- Nuclear science goals:
- Explore the new QCD frontier: strong color fields in nuclei
- Precisely image the sea-quarks and gluons to determine the spin, flavor and spatial structure of the nucleon.

- Add 70-100 GeV electron ring or Linac to interact with LHC ion beam
- Use LHC-B or ALICE IR
- High luminosity mainly due to large γ's (= E/m) of beams

High-Energy physics goals:

- Parton dynamics at the TeV scale
 - physics beyond the Standard Model
 - physics of high parton densities (low x)

Important cross fertilization of ideas:
Significant European interest in an EIC
EIC collaborators on LHeC Science Advisory Committee
(with Research Directors of CERN, FNAL, DESY)

Why Hera did not do EIC Physics

- eA physics:
 - Up to Ca beams considered (Hera III)
 - Low luminosity (1000 compared to EIC)
 - Would have needed ~\$100M to upgrade the source to have more ions, but still the low luminosity
- Polarized e-p physics
 - HERA-p ring is not planar
 - –No. of Siberian snake magnets required to polarize beam estimated to be 6-8: Not enough straight sections for Siberian snakes and not enough space in the tunnel for their cryogenics
 - -Technically difficult
- DESY was a HEP laboratory focused on the high energy frontier (Tesla).

Issues With Our Understanding

Established Model:

- Linear DGLAP evolution scheme
 - Weird behavior of xG at small x, Q²
 - Could signal saturation, higher twist effects, need for more/better data?
 - Unexpectedly large diffractive cross-section

Issues With Our Understanding

Established Model:

- Linear DGLAP evolution scheme
 - Weird behavior of xG at small x, Q²
 - Could signal saturation, higher twist effects, need for more/better data?
 - Unexpectedly large diffractive cross-section

more severe:

- Linear Evolution has a built in high energy "catastrophe"
 - xG rapid rise for decreasing x and violation of (Froissart) unitary bound
- ⇒ must tame growth (saturate)
 - Underlying dynamics?

New Approach: Non-Linear QCD

BK/JIMWLK: non-linear effects

⇒ saturation

- characterized by $Q_s(x,A)$
- believed to have properties of a Color Glass Condensate

New Approach: Non-Linear QCD

Consequence of non-linear evolution:

- Physics invariant along trajectories parallel to saturation regime
- Scale with Q²/Q²_s(x) instead of x and Q² separately

BK/JIMWLK: non-linear effects

⇒ saturation

- characterized by $Q_s(x,A)$
- believed to have properties of a Color Glass Condensate

New Approach: Non-Linear QCD

BK/JIMWLK: non-linear effects

⇒ saturation

- characterized by $Q_s(x,A)$
- believed to have properties of a Color Glass Condensate

Consequence of non-linear evolution:

- Physics invariant along trajectories parallel to saturation regime
- Scale with Q²/Q²_s(x) instead of x and Q² separately

Q_s - A Scale that Binds them All?

Nuclear shadowing:

Freund et al., hep-ph/0210139

Geometrical scaling

Q_s - A Scale that Binds them All?

Nuclear shadowing:

Freund et al., hep-ph/0210139

Geometrical scaling

Are hadrons and nuclei wave function universal at low-x?

A Truly Universal Regime?

Small *x* QCD evolution predicts:

Q_S approaches universal behavior for all hadrons and nuclei

⇒ Not only functional form f(Qs) universal but even Qs becomes the same

Radical View:

Nuclei and all hadrons have a component of their wave function with the *same* behavior.

This is a conjecture! Needs to be tested.

F₂: Sea (Anti)Quarks Generated by Glue

F₂ will be one of the first measurements at EIC

nDS, EKS, FGS: pQCD based models with different amounts of shadowing

Syst. studies of $F_2(A, x, Q^2)$:

- \Rightarrow G(x,Q²) with precision
 - ⇒ distinguish between models

$$\frac{d^2\sigma^{ep\to eX}}{dxdQ^2} = \frac{4\pi\alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right].$$

F_L at EIC: Measuring the Glue

 F_L requires \sqrt{s} scan $Q^2/xs = y$

Here: $\int Ldt = 5/A \text{ fb}^{-1} (10+100) \text{ GeV}$ $= 5/A \text{ fb}^{-1} (10+50) \text{ GeV}$ $= 2/A \text{ fb}^{-1} (5+50) \text{ GeV}$

statistical error only

nDS and EKS are
"standard" shadowing
parameterizations that are
evolved with DGLAP

$$\frac{d^2\sigma^{ep\to eX}}{dxdQ^2} = \frac{4\pi\alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right].$$

Vector Meson Production

"color dipole" picture

 $\sigma_{q\bar{q},N}(E_{inc}) = \frac{\pi^2}{3} r_t^2 \alpha_s(Q^2) x g_N(x,Q^2)$

HERA: Survival prob. of vector mesons ($q\bar{q}$ pair) as fct. of b extracted from elastic vector meson production (Munier curve: $\rho 0$, Rogers: J/ψ)

Strong gluon fields in center of p at HERA ($Q_s \sim 0.5 \text{ GeV}^2$)?

Note: b profile of nuclei more uniform and $Q_s \sim 2 \text{ GeV}^2$

Charm at EIC

EIC: allows multi-differential measurements of heavy flavor covers and extend energy range of SLAC, EMC, HERA, and JLAB allowing study of wide range of formation lengths

Diffractive Physics in e+A

'Standard DIS event'

Activity in proton direction

Diffractive Physics in e+A

Diffractive event

Activity in proton direction

- HERA/ep: 15% of all events are hard diffractive
- Diffractive cross-section $\sigma_{diff}/\sigma_{tot}$ in e+A?
 - Predictions: ~25-40%?
- Look inside the "Pomeron"
 - Diffractive structure functions
 - Diffractive vector meson production ~ [G(x,Q²)]²

Diffractive Structure Function F₂^D

$$\frac{d^4\sigma^{eA\to eAX}}{dxdQ^2d\beta dt} = \frac{4\pi\alpha_{e.m}^2}{\beta^2Q^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2^D \right] \frac{y^2}{2} F_L^D$$

 x_{IP} = momentum fraction of the pomeron w.r.t the hadron

- ⇒ Distinguish between linear evolution and saturation models
- ⇒ Insight into the nature of pomeron
- ⇒ Search for exotic objects (Odderon)

Connection to Other Fields

